CONJOINT ANALYSIS AND CBC ANALYSIS

MAIN RESEARCH QUESTION	WHAT IS THE PREFERRED ATTRIBUTE AND ATTRIBUTE LEVEL OF AN OBJECT?
Example	DETERMINE THE UTILITY CONTRIBUTION OF PRODUCT ATTRIBUTES TO A PRODUCT'S
	OVERALL UTILITY TO PREDICT PURCHASE BEHAVIOR
Type of analysis	STRUCTURE-TESTING METHOD
MEASUREMENT LEVEL	
DEPENDENT VARIABLE	Metric (Conjoint analysis); nominal (CBC analysis)
INDEPENDENT VARIABLES	Nominal, metric
RECOMMENDATIONS	• ATTRIBUTES HAVE TO BE RELEVANT FOR THE RESPONDENTS' DECISIONS. SELECTED
	ATTRIBUTES HAVE TO BE INDEPENDENT OF EACH OTHER. MANAGERS, POLICYMAKERS
	OR OTHERS HAVE TO BE ABLE TO ADAPT THE ATTRIBUTES. ATTRIBUTE LEVELS HAVE TO
	be realistic and feasible. Individual attribute levels need to be
	COMPENSATORY.
	CONSIDERED ATTRIBUTES AND ATTRIBUTE LEVELS ARE NO EXCLUSION CRITERIA.
	 NUMBER OF ATTRIBUTES AND ATTRIBUTE LEVELS NEEDS TO BE LIMITED. IT IS
	RECOMMENDED TO NOT USE MORE THAN SIX ATTRIBUTES WITH 4 levels each.
	IF YOU CONSIDER PRICE AS AN ATTRIBUTE MAKE SURE THAT THE PRICE LEVELS ARE IN
	LINE WITH CONSUMERS' WILLINGNESS-TO-PAY.
	CAREFULLY TEST DIFFERENT SPECIFICATIONS OF THE UTILITY FUNCTION AND PAY
	ATTENTION TO THE NUMBER OF DEGREES OF FREEDOM.
	CHECK THE PREDICTIVE VALIDITY OF YOUR RESULTS.
Keywords	ADAPTIVE CHOICE-BASED-CONJOINT (ACBC). ADAPTIVE CONJOINT ANALYSIS (ACA).

KEYWORDS

ASYMMETRIC DESIGN, BANDWIDTH EFFECT, BRADLEY-TERRY-LUCE (BTL) RULE, CONSTANT SUM SCALE, DISCRETE CHOICE ANALYSIS, DOLLAR METRIC, EXPERIMENTAL DESIGN, FIRST-CHOICE RULE, FULL FACTORIAL DESIGN, FULL-PROFILE METHOD, IDEAL POINT MODEL, LATIN SQUARE, LOGIT RULE, MAXDIFF METHOD, NO-CHOICE OPTION, NUMBER-OF-LEVELS EFFECT, ORTHOGONAL DESIGN, PAIRED COMPARISON, PARTWORTH, PROBABILISTIC RULE, RANKING SCALE, RATING SCALE, REDUCED DESIGN, SYMMETRIC DESIGN, TIES, TRADE-OFF METHOD, VECTOR MODEL, UTILITY BALANCE

BACKHAUS, KLAUS; ERICHSON, BERND; GENSLER, SONJA; WEIBER, ROLF; WEIBER, THOMAS (2021) MULTIVARIATE ANALYSIS – AN APPLICATION-ORIENTED INTRODUCTION, SPRINGER: BERLIN